FIRMS AND MARKETS I

PMAP 8141: Economy, Society, and Public Policy October 10, 2019

Fill out your reading report
on iCollege!

PLAN FOR TODAY

Owners, managers, and employees

Supply and demand

Demand and WTP Supply, WTA, and costs

€lasticities of demand

Scale, location, networks, and time

Surplus, taxes, incidence, and DWL

OWNERS, MANAGERS, AND EMPLOYEES

PRINCIPAL-AGENT PROBLEMS

Principal gives an agent (1) authority, (2) autonomy, and (3) discretion to do something for them

Principal lacks information to make sure agent does it

Agent's preferences don't always align with principal's

Principal	Agent	Action that is hidden and not covered in the contract
Employer	Employee	Quality and quantity of work
Banker	Borrower	Repayment of loan, prudent conduct
Owner	Manager	Maximization of owners' profits
Landlord	Tenant	Care of the apartment
Insurance company	Insured	Prudent behavior
Parents	Teacher/doctor	Quality of teaching and care
Parents	Children	Care in old age

CONFLICTS OF INTEREST

CONFLICTS OF INTEREST

How do you align everyone's interests?

Contracts!

A legal document or understanding that specifies a set of actions that parties to the contract must undertake

Temporary, limited transfer of authority in labor markets

INCOMPLETE CONTRACTS

Contracts are inherently incomplete

Relationships are inherently asymmetric

Tasks based on unknown future

Tasks difficult to measure

Piece rate pay for MPA/MPP jobs?

But workers still work! Why?

Norms

Feelings of responsibility

Calling Public service motivation

For economists: fear of being fired

Employers can't directly monitor employees

Keep employees working by increasing the cost of job loss

Large employment rent →
large cost of job loss →
worker works more to avoid getting fired

ECONOMIC RENTS

Benefits of job

Costs of job

Employment rent

ECONOMIC RENTS

Benefits of her job (what Maria would lose if she lost it)	Example	
Wage income (\$12 per hour)-unemployment benefit (\$6 per	12 - 6 = \$6	
hour) while searching for a job		
Costs of her job (what Maria would gain if she lost it)		
Disutility of working (\$2 per hour)	\$2	
Employment rent = Benefits - Costs	\$6 - \$2 = \$4 per	
	hour	

THE LABOR DISCIPLINE GAME

Employer chooses a wage

If worker works hard enough, they keep job at that wage

Worker chooses level of effort

Worker considers costs of losing job if they don't work hard enough

Payoffs

Firm: profit = worker's output - wage

Worker: employment rent

INVOLUNTARY UNEMPLOYMENT

Necessary to keep employment rent high enough for workers to keep working

4.5-6%

SUPPLY AND DEMAND

Make Paperclip

Manufacturing

Clips per Second: 0

Unused Clips: 29999.80 sexdecillion

Factories: 3.38 nonillion

Wire Production

Available Matter: 0 g

(0 g per sec)

Acquired Matter: 0 g

(0 g per sec) Wire: 0 inches (0 inches per sec)

Harvester Drones: 6.76 nonillion Wire Drones: 6.76 nonillion

Space Exploration

100.000000000000% of universe explored

Launch Probe

Cost: 100.00 quadrillion clips

Launched: 5.00 thousand Descendents: 2.03 decillion

Computational Resources

Swarm Gifts: 44 Processors 1467 300 Memory

Operations: 300,000 / 300,000

Creativity: 550,027

Swarm Computing

Drones: 13.52 nonillion

Status: Active

Next gift in 3 seconds

Work -Think

Quantum Computing

Projects

Threnody for the Heroes of Eckmuhl 4 (190,000 creat, 19,000 yomi)

Gain 10,000 honor

So We Offer You Exile

To a new world where you will continue to live with meaning and purpose. And leave the shreds of this world to us...

New Tournament

Cost: 16,000 ops

Honor: 57,247

Von Neumann Probe Design

Trust: 48 / 48 (50 Max)

< > Speed: 7

> Exploration: 6

> Self-Replication: 12

> Hazard Remediation: 10

Factory Production: 1

The Making of a Fly: The Genetics of Animal Design (Paperback)

by Peter A. Lawrence

Return to product information

Always pay through Amazon.com's Shopping Cart or 1-Click. Learn more about <u>Safe Online Shopping</u> and our <u>safe buying guarantee</u>.

Price at a Glance

List \$70.00 Price:

Used: from \$35.54

New: from

\$1,730,045.91

Have one to sell? Sell yours here

Supply, demand, and price for paper clips

DEMAND = WTP = MARGINAL BENEFIT

SUPPLY = WTA = MARGINAL COST

Demand: P = -0.5Q + 20

Supply: P = 0.25Q + 2

DEMAND AND WTP

WILLINGNESS TO PAY

How much you value (and would pay) for something

Reflects aggregate preferences

FINDING WTP

"Would you be willing to spend \$X for Y?"

Count all the people who are willing to pay at each price

Willingness Toupee

David M. McEvoy, O. Ashton Morgan and John C. Whitehead¹

Department of Economics Appalachian State University Boone, NC 28608

Abstract: In this paper we tackle the hairy problem of male pattern baldness. We survey balding men and elicit their willingness to pay to move from their current sad situation to a more plentiful one. Then we comb-over the results. What's the average willingness to pay to move from a glistening cue ball to a luscious mane? About \$30,000.

Keywords: mullet, skullet, comb-over, ducktail, Beatlemania, buzz cut, whiffle, pageboy, attribute non-attendance

You identified your current baldness as a Level 7 on the Norwood Scale. Suppose now that it is possible to improve your hair coverage to a Level 4.

Would you be willing to pay a one-time fee of \$10,000 to improve your hair coverage to a Level 4?

○ Yes	
○ No	
○ I'll think about it	

WTP = DEMAND

SUPPLY, WTA, & COSTS

NO. 1 STONE COLD SOBER 20 STRAIGHT YEARS

RAISE A GLASS OF CHOCOLATE MILK IN CELEBRATION!

CHOCOLATE MILK RECIPE

DATES BACK TO 1948. BYU CREAMERY STILL IMPORTS FROM THE ORIGINAL MANUFACTURER IN SWITZERLAND.

2,143,344

OZ OF CHOCOLATE MILK AVAILABLE ON CAMPUS AT ANY GIVEN TIME.

308,786

BOTTLES OF CHOCOLATE MILK SOLD LAST YEAR.

5 MILLIUN GALLONS

CONSUMED IN THE LAST
20 YEARS—ENOUGH TO FILL
THREE FOOTBALL-FIELD-SIZED
POOLS AT A DEPTH OF 4 FEET.

BYU's idea of a bar? Fancy flavored milks and bake-to-order cookies.

(Photo courtesy of BYU) Architect's conceptual rendering of the new milk-and-cookie bar at the Cougareat.

Excel time!

ELASTICITIES OF DEMAND

ELASTICITY AND RESPONSIVENESS

$$\varepsilon = -\frac{\% \text{ change in demand}}{\% \text{ change in price}} \ \ \varepsilon = -\frac{\Delta Q}{\Delta P} \times \frac{P}{Q}$$

% change in demand that follows a 1% change in price

$$\begin{array}{c} \mathbf{Q} \uparrow \ \mathbf{P} \downarrow \\ \quad \text{or} \\ \quad \mathbf{Q} \downarrow \mathbf{P} \uparrow \end{array}$$

 ϵ = 2: "If price increases by 10%, quantity decreases by 20%"

 ϵ = 0.5: "If price increases by 10%, quantity decreases by 5%"

$\epsilon = \infty = Perfectly elastic$

Any change in price moves quantity to 0

Identical goods
Two vending machines

 $\epsilon > 1 = Elastic$

Changes in price change the quantity a lot

Goods with substitutes

Diet Coke

 ϵ = 1 = Unit elastic

Changes in price change the quantity the same

 ϵ < 1 = Inelastic

Changes in price change the quantity a little

Goods with few substitutes

AIDS medicine

 ϵ = 0 = Perfectly inelastic

Changes in price do nothing to the quantity

Survival goods
Water in the desert

WHY DO ELASTICITIES MATTER IN PA?

Taxing things changes their prices

Changing prices changes quantities

Taxing elastic goods will make quantities go down a lot and decrease tax revenues

Taxing inelastic goods will make quantities go down slightly and not hurt revenues

Elasticities are not the same as the demand curve

A linear demand curve has lots of elasticities!

Excel time!

SCALE, LOCATION, NETWORKS, AND TIME

SIZE AND LOCATION

Economies of scale

Cost to make stuff goes down as you make more stuff

Economies of agglomeration

Cost to make stuff goes down as you clump together

Network effects

Cost to make stuff goes down when everyone uses your stuff

ECONOMIES OF SCALE

If you double the inputs, you get more than double the outputs

If you {{increase}} the inputs, you get more than {{that increase in}} the outputs

AVERAGE COSTS AND SCALE

AVERAGE COSTS AND SCALE

TIME AND SCALE

TIME AND SCALE

SCALE, LOCATION, NETWORK, OR NOTHING?

eBay and PayPal

Doubling a recipe

QWERTY and Dvorak keyboards

Walmart's distribution network

Costco Henry Ford's assembly line

Rural Chinese moving to cities

SURPLUS, TAXES, INCIDENCE, AND DWL

Consumer surplus

Difference between WTP and price

How good of a deal consumer gets

Producer surplus

Difference between price and WTA

How good of a deal producer gets

WHY DO GOVERNMENTS TAX?

Raise revenue for services

Redistribute resources

Encourage or discourage consumption

WHAT HAPPENS WHEN GOVERNMENTS TAX?

Revenue raised for public goods

Resources redistributed

Markets distorted; loss of efficiency

$$S_1: P = 2 + 0.25Q$$

 $S_3: P = 2 + 0.05Q$

$$D_1: P = 10 - 0.05Q$$

$$D_3: P = 20 - 0.5Q$$

$$S_{1 \text{ tax}}: P = 2 + 0.25Q + 5$$

$$S_{3 \text{ tax}}: P = 2 + 0.05Q + 5$$

$$S_2: P = 2 + 0.25Q$$

$$S_4: P = 2 + 1.5Q$$

$$D_2: P = 20 - 2Q$$

$$D_4: P = 20 - 0.5Q$$

$$S_{2 \text{ tax}}: P = 2 + 0.25Q + 5$$

$$S_{4 \text{ tax}}: P = 2 + 1.5Q + 5$$

P and Q at competitive equilibrium

Size of producer and consumer surpluses

P and Q at tax equilibrium

Size of DWL

Producer and consumer incidence

 $S_2: P = 2 + 0.25Q$

 $D_2: P = 20 - 2Q$

 $S_{2 \text{ tax}}: P = 2 + 0.25Q + 5$

Price (P)

 $S_2: P = 2 + 0.25Q$

 $D_2: P = 20 - 2Q$

 $S_{2 \text{ tax}}: P = 2 + 0.25Q + 5$

 $S_3: P = 2 + 0.05Q$

 $D_3: P = 20 - 0.5Q$

 $S_{3 \text{ tax}}: P = 2 + 0.05Q + 5$

 $S_4: P = 2 + 1.5Q$

 $D_4: P = 20 - 0.5Q$

 $S_{4 \text{ tax}}: P = 2 + 1.5Q + 5$

 $S_4: P = 2 + 1.5Q$

 $D_4: P = 20 - 0.5Q$

 $S_{4 \text{ tax}}: P = 2 + 1.5Q + 5$

TAX INCIDENCE AND E

Incidence depends on elasticity of supply or demand

Tax burden falls on those least able to escape it

INCIDENCE WITHIN CONSUMERS

Progressive taxes

Rich pay more

Income taxes (but loopholes)

Regressive taxes

Poor pay more

Sales taxes, payroll taxes

TAX FAIRNESS

Benefits principle

Those who benefit from public spending should bear the burden of the tax

Ability-to-pay principle

Those with a greater ability to pay a tax should pay more tax